Cyber Intelligence Decision Support in the Era of Big Data

Zlatogor Minchev, Georgi Dukov, Teodora Ivanova, Kiril Mihaylov, Doychin Boyadzhiev, Plamen Mateev, Maroussia Bojkova, Nina Daskalova

1. Problem Definition
Three key moments have to be solved for this complex problem proper approaching: (i) selection of suitable formalism for fast and easy modelling, implementing both experts’ data and cyber incidents statistics on past and future cyberattacks trends; (ii) model quantification is necessary to be added, achieving a suitable machine interpretation for discrete optimization; (iii) some probabilistic elements have also to be considered, in order to achieve realistic models, practical implementation decision support, benefitting from the “big data” knowledge context of the task. Practical implementation of these moments will be given further.

2. Modelling & Results Optimization
The practical modelling for cyber incidents is organized in a simple and flexible manner, using the “Entity – Relationship” (“E – R”) machine representation, successfully implemented in I-SCIP-SA environment [1] and being used in numerous cyber threats analysis [2].

The “E – R” representation is simplified in a graph-like form, noting the mathematical aspects of the current modelling efforts.

An oriented graph model of m nodes (representing the Entities) and n arcs (noting the Relations between entities in the model) is accomplished.

The arcs in the graph are marked in a quadratic [$m \times m$] incident matrix $A = [a_{i,j}]$, $i = 1 \div m$, $j = 1 \div m$. The matrix A elements are binary numbers, regarding the presence ($a_{i,j} = 1$) or absence ($a_{i,j} = 0$) of an arc between the nodes i and j. For each arc $a_{i,j}$, a weighting coefficient $x_{i,j}$ are assumed.

The resulting classification of the graph nodes is calculated, using a cumulative approach for input $a_{k,j}$ arcs and their $x_{k,j}$ weights – p_k vs output $a_{j,k}$ arcs and their $x_{j,k}$ weights – q_k as follows:

$$ p_k = \sum_{j=1}^{m} a_{k,j} \cdot x_{k,j}, \quad q_k = \sum_{j=1}^{m} a_{j,k} \cdot x_{j,k}, \quad k = 1 \div m. $$
In accordance with the practical necessities of cyber incidents modelling, different Rn classification zones could be defined.

An important moment here is the difficulty, related to reverse arcs’ weights recalculation. A matching necessity for initial experts’ nodes classification and new future beliefs trends is expected. These decision support tasks are non-trivial, producing different optimizational complexities for the multiple objects predispositioning practical needs.

A useful quadratic approach, with Euclidean L\textsubscript{2} norm implementation in the classification task, is proposed in [3]. As the solutions of the quadratic optimization task are not always feasible with positive arcs’ weights values, a further linear simplification with D\textsubscript{1} as Chebyshev (cubic) norm is accomplished.

The distance D\textsubscript{1} of the i-th point in 2D space, following (1) the new desired predisposition (p\textsubscript{i}, q\textsubscript{i}) is calculated as:

\begin{equation}
D_1 = \max \left(\left| \sum_j a_{i,j} \cdot x_{i,j} - p_i \right|, \left| \sum_j a_{j,i} \cdot x_{j,i} - q_i \right| \right), \quad i = 1 \div m, \quad j = 1 \div m.
\end{equation}

If we denote this D\textsubscript{1} distance with a new variable y, the following inequalities are obvious:

\begin{equation}
\left| \sum_j a_{i,j} \cdot x_{i,j} - p_i \right| \leq y,
\end{equation}

\begin{equation}
\left| \sum_j a_{j,i} \cdot x_{j,i} - q_i \right| \leq y.
\end{equation}

We use the fact that:

\begin{equation}
|x| \leq a \Leftrightarrow -a \leq x \leq a.
\end{equation}

Substituting (3) and (4) modular inequalities with a couple of linear ones, following the idea in (5), we get:

\begin{equation}
-y \leq \sum_j a_{i,j} \cdot x_{i,j} - p_i \leq y,
\end{equation}

\begin{equation}
-y \leq \sum_j a_{j,i} \cdot x_{j,i} - q_i \leq y.
\end{equation}

Thus, introducing a new nonnegative variable y, in order to achieve minimal difference from the desired new nodes cluster positioning, we have to minimize a new linear objective function Z:

\begin{equation}
\min Z = y,
\end{equation}
under linear constraints:

\[
\sum_j a_{i,j} \cdot x_{i,j} \leq p_i + y, \quad \sum_j a_{i,j} \cdot x_{i,j} \geq p_i - y,
\]

\[
\sum_j a_{j,i} \cdot x_{j,i} \leq q_i + y, \quad \sum_j a_{j,i} \cdot x_{j,i} \geq q_i - y.
\]

3. Probability Extension

The idea behind this model extension is based on the graph arcs’ existence forecasting, implementing a probabilistic approach.

For each arc \(a_{i,j} \) from the matrix \(A \), the risk \(r \) for cyber attack is defined as:

\[
r_{a_{i,j}} = \frac{h_{a_{i,j}}}{u_{a_{i,j}}}, \quad i = 1 \div m, \quad j = 1 \div m,
\]

where \(h \) is the number of harmful requests and \(u \) – total number of requests for the \(a_{i,j} \) arc.

What is also important to note here is the implemented probability distribution, benefitting from the big data knowledge context. As the combination of statistical observations, concerning past cyber incidents, have to be mixed with experts’ future beliefs, a suitable approach is the Beta distribution because of its intuitive and easy implementation [4].

In this case, both the \(a \) priori and the \(a \) posteriori probabilities are defined as follows:

\[
r_{a_{i,j}} \sim a \ priori Beta(\alpha, \beta),
\]

\[
r_{a_{i,j}} \sim a \ posteriori Beta(\alpha + h_{a_{i,j}}, \beta + (u_{a_{i,j}} - h_{a_{i,j}})), \quad \alpha > 0, \ \beta > 0.
\]

4. Prototyping

The studied context is outlined, following the trends noted in [5]–[10]. The “Mobile E-trading”, “Smart Mixed Realities” and “E-government Services” are selected for further exploration.

Models are created in I-SCIP-SA. The entities number is between five and seven, assuring a convenient and simple graphical illustration. 3D sensitivity diagram with four sectors (Active, Passive, Critical and Buffering) is used, following input/output (Influence/Dependence) arcs’ weights cumulative assessment (see eq. (1)) with additional 3rd vector absolute sensitivity representation [1].

MS Excel 2010 SOLVER is used for the optimization support, due to the small nodes number and simplified interface [11]. The probabilistic cyber attacks simulation is organized in Matlab R2011b environment [12].
Three illustrative models (see Figure 1 – Figure 3) are developed, using STEMOL Ltd. experts’ support, working group discussions and research experience.

(i) Botnet DDoS attack on E-government services

![Diagram of E-government botnet DDoS attack system model illustration and resulting 3D sensitivity diagrams before (a) and after (b) the optimization: Panel I: Probabilistic \textit{a priori} (a) and \textit{a posteriori} (b) selected risk assessments: Panel II](image)

Fig. 1. E-government botnet DDoS attack system model illustration and resulting 3D sensitivity diagrams before (a) and after (b) the optimization: Panel I: Probabilistic \textit{a priori} (a) and \textit{a posteriori} (b) selected risk assessments: Panel II
(ii) *Bank system with credit card services compromising usage via mobile devices*

Fig. 2. Bank credit card services cyber attack system model illustration and resulting 3D sensitivity diagrams before (a) and after (b) the desired optimization: Panel I; Probabilistic *a priori* (a) and *a posteriori* (b) selected risk assessments: Panel II
(iii) Smart home mixed reality cyber attack

Fig. 3. Smart home mixed reality cyber attack system model illustration and resulting 3D sensitivity diagrams before (a) and after (b) the desired optimization: Panel I; Probabilistic a priori (a) and a posteriori (b) selected risk assessments: Panel II
5. Discussion

The presented complex approach for cyber intelligence decision support provides a good starting point for applied research in the era of big data.

The accomplished graph-based generic solution allows interactive analysis and near real time classification of present and future cyber threats, combining both experts’ knowledge with available incidents statistics.

Additional results validation is accomplished by implementing probabilistic attacks trends evaluation, combining initial beliefs with numerical experiments simulation results.

What is also important to note here is the necessity of network sensors data integration in the presented validation approach.

This gives a possibility for deeper exploration of new cyber threats and attacks evolution, benefitting from the system modelling and assessment perspective with technologies and human factor intelligent support.

References

